Pahenu1 is a mouse model for tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency and promotes analysis of the pharmacological chaperone mechanism in vivo.
نویسندگان
چکیده
The recent approval of sapropterin dihydrochloride, the synthetic form of 6[R]-l-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)), for the treatment of phenylketonuria (PKU) as the first pharmacological chaperone drug initiated a paradigm change in the treatment of monogenetic diseases. Symptomatic treatment is now replaced by a causal pharmacological therapy correcting misfolding of the defective phenylalanine hydroxylase (PAH) in numerous patients. Here, we disclose BH(4) responsiveness in Pah(enu1), a mouse model for PAH deficiency. Loss of function resulted from loss of PAH, a consequence of misfolding, aggregation, and accelerated degradation of the enzyme. BH(4) attenuated this triad by conformational stabilization augmenting the effective PAH concentration. This led to the rescue of the biochemical phenotype and enzyme function in vivo. Combined in vitro and in vivo analyses revealed a selective pharmaceutical action of BH(4) confined to the pathological metabolic state. Our data provide new molecular-level insights into the mechanisms underlying protein misfolding with loss of function and support a general model of pharmacological chaperone-induced stabilization of protein conformation to correct this intracellular phenotype. Pah(enu1) will be essential for pharmaceutical drug optimization and to design individually tailored therapies.
منابع مشابه
Wild-type phenylalanine hydroxylase activity is enhanced by tetrahydrobiopterin supplementation in vivo: an implication for therapeutic basis of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency.
We previously proposed a novel disease entity, tetrahydrobiopterin (BH4)-responsive phenylalanine hydroxylase (PAH) deficiency, in which administration of BH4 reduced elevated levels of serum phenylalanine [J. Pediatr. 135 (1999) 375-378]. Subsequent reports indicate that the prevalence of BH4-responsive PAH deficiency is much higher than initially anticipated. Although growing attention surrou...
متن کاملAnalysis of the effect of tetrahydrobiopterin on PAH gene expression in hepatoma cells.
Tetrahydrobiopterin (BH4)-responsive phenylalanine hydroxylase (PAH) deficiency is a recently recognized variant of phenylketonuria, with a probable multifactorial molecular basis. In this study we have investigated the effect of BH4 on PAH gene expression in human hepatoma. Our results show that increased BH4 levels result in an enhancement of PAH activity and PAH protein, due to longer turnov...
متن کاملTetrahydrobiopterin protects phenylalanine hydroxylase activity in vivo: implications for tetrahydrobiopterin-responsive hyperphenylalaninemia.
The natural cofactor of phenylalanine hydroxylase (PAH), tetrahydrobiopterin (BH4), regulates the enzyme activity as well as being essential in catalysis. BH4-responsive PAH deficiency is a variant of hyperphenylalaninemia or phenylketonuria (PKU) caused by mutations in the human PAH gene that respond to oral BH4 loading by stimulating enzyme activity and therefore lowering serum phenylalanine....
متن کاملStimulation of hepatic phenylalanine hydroxylase activity but not Pah-mRNA expression upon oral loading of tetrahydrobiopterin in normal mice.
Tetrahydrobiopterin (BH4) supplementation in patients with BH4-responsive phenylalanine hydroxylase (PAH) deficiency is an alternative to low-phenylalanine diet. To further investigate hepatic BH4-responsiveness, oral administration of 50 mg BH4/kg/day for 5 weeks was performed in wild-type mice. We observed a 2-fold increase in PAH protein by quantitative Western blot analysis and a 1.7-fold i...
متن کاملNovel pharmacological chaperones that correct phenylketonuria in mice.
Phenylketonuria (PKU) is caused by inherited phenylalanine-hydroxylase (PAH) deficiency and, in many genotypes, it is associated with protein misfolding. The natural cofactor of PAH, tetrahydrobiopterin (BH(4)), can act as a pharmacological chaperone (PC) that rescues enzyme function. However, BH(4) shows limited efficacy in some PKU genotypes and its chemical synthesis is very costly. Taking a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 19 10 شماره
صفحات -
تاریخ انتشار 2010